Comparing Decomposition-Based and Automatically Component-Wise Designed Multi-Objective Evolutionary Algorithms

نویسندگان

  • Leonardo C. T. Bezerra
  • Manuel López-Ibáñez
  • Thomas Stützle
چکیده

A main focus of current research on evolutionary multiobjective optimization (EMO) is the study of the effectiveness of EMO algorithms for problems with many objectives. Among the several techniques that have led to the development of more effective algorithms, decomposition and component-wise design have presented particularly good results. But how do they compare? In this work, we conduct a systematic analysis that compares algorithms produced using the MOEA/D decomposition-based framework and the AutoMOEA component-wise design framework. In particular, we identify a version of MOEA/D that outperforms the best known MOEA/D algorithm for several scenarios and confirms the effectiveness of decomposition on problems with three objectives. However, when we consider problems with five objectives, we show that MOEA/D is unable to outperform SMS-EMOA, being often outperformed by it. Conversely, automatically designed AutoMOEAs display competitive performance on three-objective problems, and the best and most robust performance among all algorithms considered for problems with five objectives.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Design of Evolutionary Algorithms for Multi-Objective Combinatorial Optimization

Multi-objective evolutionary algorithms (MOEAs) have been the subject of a large research effort over the past two decades. Traditionally, these MOEAs have been seen as monolithic units, and their study was focused on comparing them as blackboxes. More recently, a component-wise view of MOEAs has emerged, with flexible frameworks combining algorithmic components from different MOEAs. The number...

متن کامل

A Hybrid MOEA/D-TS for Solving Multi-Objective Problems

In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This i...

متن کامل

A MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM USING DECOMPOSITION (MOEA/D) AND ITS APPLICATION IN MULTIPURPOSE MULTI-RESERVOIR OPERATIONS

This paper presents a Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) for the optimal operation of a complex multipurpose and multi-reservoir system. Firstly, MOEA/D decomposes a multi-objective optimization problem into a number of scalar optimization sub-problems and optimizes them simultaneously. It uses information of its several neighboring sub-problems for optimizin...

متن کامل

Approximate Pareto Optimal Solutions of Multi objective Optimal Control Problems by Evolutionary Algorithms

In this paper an approach based on evolutionary algorithms to find Pareto optimal pair of state and control for multi-objective optimal control problems (MOOCP)'s is introduced‎. ‎In this approach‎, ‎first a discretized form of the time-control space is considered and then‎, ‎a piecewise linear control and a piecewise linear trajectory are obtained from the discretized time-control space using ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015